Farmer John’s cows keep escaping from his farm and causing mischief. To try and prevent them from leaving, he purchases a fancy combination lock to keep his cows from opening the pasture gate.
Knowing that his cows are quite clever, Farmer John wants to make sure they cannot easily open the lock by simply trying many different combinations. The lock has three dials, each numbered 1..N (1 <= N <= 100), where 1 and N are adjacent since the dials are circular. There are two combinations that open the lock, one set by Farmer John, and also a “master” combination set by the lock maker.
The lock has a small tolerance for error, however, so it will open even if the numbers on the dials are each within at most 2 positions of a valid combination.
For example, if Farmer John’s combination is (1,2,3) and the master combination is (4,5,6), the lock will open if its dials are set to (1,3,5) (since this is close enough to Farmer John’s combination) or to (2,4,8) (since this is close enough to the master combination). Note that (1,5,6) would not open the lock, since it is not close enough to any one single combination.
Given Farmer John’s combination and the master combination, please determine the number of distinct settings for the dials that will open the lock. Order matters, so the setting (1,2,3) is distinct from (3,2,1).
Line 1: | The integer N. |
---|---|
Line 2: | Three space-separated integers, specifying Farmer John’s combination. |
Line 3: | Three space-separated integers, specifying the master combination (possibly the same as Farmer John’s combination). |
50
1 2 3
5 6 7
Each dial is numbered 1..50. Farmer John’s combination is (1,2,3), and the master combination is (5,6,7).
Line 1: The number of distinct dial settings that will open the lock.
249
Here’s a list:
1,1,1 2,2,4 3,4,2 4,4,5 5,4,8 6,5,6 7,5,9 3,50,2 50,1,4
1,1,2 2,2,5 3,4,3 4,4,6 5,4,9 6,5,7 7,6,5 3,50,3 50,1,5
1,1,3 2,3,1 3,4,4 4,4,7 5,5,5 6,5,8 7,6,6 3,50,4 50,2,1
1,1,4 2,3,2 3,4,5 4,4,8 5,5,6 6,5,9 7,6,7 3,50,5 50,2,2
1,1,5 2,3,3 3,4,6 4,4,9 5,5,7 6,6,5 7,6,8 49,1,1 50,2,3
1,2,1 2,3,4 3,4,7 4,5,5 5,5,8 6,6,6 7,6,9 49,1,2 50,2,4
1,2,2 2,3,5 3,4,8 4,5,6 5,5,9 6,6,7 7,7,5 49,1,3 50,2,5
1,2,3 2,4,1 3,4,9 4,5,7 5,6,5 6,6,8 7,7,6 49,1,4 50,3,1
1,2,4 2,4,2 3,5,5 4,5,8 5,6,6 6,6,9 7,7,7 49,1,5 50,3,2
1,2,5 2,4,3 3,5,6 4,5,9 5,6,7 6,7,5 7,7,8 49,2,1 50,3,3
1,3,1 2,4,4 3,5,7 4,6,5 5,6,8 6,7,6 7,7,9 49,2,2 50,3,4
1,3,2 2,4,5 3,5,8 4,6,6 5,6,9 6,7,7 7,8,5 49,2,3 50,3,5
1,3,3 3,1,1 3,5,9 4,6,7 5,7,5 6,7,8 7,8,6 49,2,4 50,4,1
1,3,4 3,1,2 3,6,5 4,6,8 5,7,6 6,7,9 7,8,7 49,2,5 50,4,2
1,3,5 3,1,3 3,6,6 4,6,9 5,7,7 6,8,5 7,8,8 49,3,1 50,4,3
1,4,1 3,1,4 3,6,7 4,7,5 5,7,8 6,8,6 7,8,9 49,3,2 50,4,4
1,4,2 3,1,5 3,6,8 4,7,6 5,7,9 6,8,7 1,50,1 49,3,3 50,4,5
1,4,3 3,2,1 3,6,9 4,7,7 5,8,5 6,8,8 1,50,2 49,3,4 49,50,1
1,4,4 3,2,2 3,7,5 4,7,8 5,8,6 6,8,9 1,50,3 49,3,5 49,50,2
1,4,5 3,2,3 3,7,6 4,7,9 5,8,7 7,4,5 1,50,4 49,4,1 49,50,3
2,1,1 3,2,4 3,7,7 4,8,5 5,8,8 7,4,6 1,50,5 49,4,2 49,50,4
2,1,2 3,2,5 3,7,8 4,8,6 5,8,9 7,4,7 2,50,1 49,4,3 49,50,5
2,1,3 3,3,1 3,7,9 4,8,7 6,4,5 7,4,8 2,50,2 49,4,4 50,50,1
2,1,4 3,3,2 3,8,5 4,8,8 6,4,6 7,4,9 2,50,3 49,4,5 50,50,2
2,1,5 3,3,3 3,8,6 4,8,9 6,4,7 7,5,5 2,50,4 50,1,1 50,50,3
2,2,1 3,3,4 3,8,7 5,4,5 6,4,8 7,5,6 2,50,5 50,1,2 50,50,4
2,2,2 3,3,5 3,8,8 5,4,6 6,4,9 7,5,7 3,50,1 50,1,3 50,50,5
2,2,3 3,4,1 3,8,9 5,4,7 6,5,5 7,5,8
We can use a brute force approach to solve this problem.
class combo {
public static void main(String[] args) throws IOException {
try (final BufferedReader f = new BufferedReader(new FileReader("combo.in"));
final PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("combo.out")))) {
final int maxDialNumber = Integer.parseInt(f.readLine());
final String[] farmerCombo = f.readLine().split(" ");
final String[] masterCombo = f.readLine().split(" ");
final List<Integer> farmerComboList = new ArrayList<>();
for (String combo : farmerCombo) {
farmerComboList.add(Integer.parseInt(combo));
}
final List<Integer> masterComboList = new ArrayList<>();
for (String combo : masterCombo) {
masterComboList.add(Integer.parseInt(combo));
}
// generate all possible settings for Farmer John's lock
final Set<String> possibleCombos = new HashSet<>();
for (int i = farmerComboList.get(0) - 2; i <= farmerComboList.get(0) + 2; i++) {
for (int j = farmerComboList.get(1) - 2; j <= farmerComboList.get(1) + 2; j++) {
for (int k = farmerComboList.get(2) - 2; k <= farmerComboList.get(2) + 2; k++) {
final int dial1 = (i + 50) % (maxDialNumber);
final int dial2 = (j + 50) % (maxDialNumber);
final int dial3 = (k + 50) % (maxDialNumber);
possibleCombos.add("" + (dial1 == 0 ? 50 : dial1)
+ "," + (dial2 == 0 ? 50 : dial2)
+ "," + (dial3 == 0 ? 50 : dial3));
}
}
}
// generate all possible settings for master lock
for (int i = masterComboList.get(0) - 2; i <= masterComboList.get(0) + 2; i++) {
for (int j = masterComboList.get(1) - 2; j <= masterComboList.get(1) + 2; j++) {
for (int k = masterComboList.get(2) - 2; k <= masterComboList.get(2) + 2; k++) {
final int dial1 = (i + 50) % (maxDialNumber);
final int dial2 = (j + 50) % (maxDialNumber);
final int dial3 = (k + 50) % (maxDialNumber);
possibleCombos.add("" + (dial1 == 0 ? 50 : dial1)
+ "," + (dial2 == 0 ? 50 : dial2)
+ "," + (dial3 == 0 ? 50 : dial3));
}
}
}
// output
out.println(possibleCombos.size());
}
}
}
Link To: Java Source Code